Oxidative effect of low-intensity microwave radiation in the model of developing quail embryos

ABSTRACT

Objective: Exposure of humans to low-intensity microwave (MW) radiation under some circumstances leads to several medical conditions, including headache, chronic fatigue, and even cancer. Mechanisms of these effects in many cases may depend on oxidative stress caused by MW exposure. Our study aims to assess oxidative stress features in embryonic cells under low-intensity MW exposure in the first stage of embryogenesis. Methods: Embryos of Japanese quails were exposed in ovo to low-intensity MW of global system for mobile communication (GSM) 900 MHz (0.25 μW/cm2) during 158-360 h discontinuously (48 c – ON, 12 c – OFF) before and in the initial stages of development. The levels of superoxide (O2•−), nitrogen oxide (NO•), and 8-oxo-2’-deoxyguanosine (8-oxo-dG) were assessed in cells of 38-h, 5-, and 10-day exposed embryos and compared to the control group. Lucigenin-enhanced chemiluminescence was used for assessment of GSM modulation role in MW-induced oxidative effects. Results: A significant persistent overproduction of superoxide, nitrogen oxide, and 8-oxo-dG in GSM MW-exposed embryonic cells during all periods of analyses was detected. Conclusion: Exposure of developing quail embryos to low-intensity MW of GSM 900 MHz during the first stages of embryogenesis resulted in a significant overproduction of superoxide and nitrogen oxide and oxidative damages of DNA in embryonic cells. These effects were interpreted to be depended on the GSM modulation of MW.

The article can be found here.

Comment: This is a very interesting and important study. Embryos of Japanese quails were exposed to radiofrequency (RF) radiation using GSM 900 MHz. The average intensity of RF radiation on the surface of hatching eggs in the exposed group was 2 500 μW/m2 (0.25 μW/cm2). SAR was calculated to 3 μW/kg. A control group with no exposure was used. A statistically significant overproduction of reactive oxygen species (ROS) and oxidative damage of DNA in living cells was reported. The exposure was far below the guideline still provided by ICNIRP for RF radiation as 2 to 10W/m2 depending on frequency and 2 W/kg to the brain. The results in the study show that the ICNIRP guidelines are outdated, see our previous discussion. Moreover, using a safety factor of 10 would give 250 μW/m2 as guideline, a level easily exceeded in many places, see our measurements at Stockholm Central Railway Station and Stockholm Old Town.

Advertisements

World Health Organization, radiofrequency radiation and health – a hard nut to crack (Review)

In a new article by Dr Lennart Hardell health effects from radiofrequency radiation, ICNIRP and the WHO agenda are discussed. The whole article can be found here, see also abstract below.

Abstract. In May 2011 the International Agency for Research on Cancer (IARC) evaluated cancer risks from radiofrequency (RF) radiation. Human epidemiological studies gave
evidence of increased risk for glioma and acoustic neuroma. RF radiation was classified as Group 2B, a possible human carcinogen. Further epidemiological, animal and mechanistic
studies have strengthened the association. In spite of this, in most countries little or nothing has been done to reduce exposure and educate people on health hazards from RF
radiation. On the contrary ambient levels have increased. In 2014 the WHO launched a draft of a Monograph on RF fields and health for public comments. It turned out that five
of the six members of the Core Group in charge of the draft are affiliated with International Commission on Non-Ionizing Radiation Protection (ICNIRP), an industry loyal NGO, and
thus have a serious conflict of interest. Just as by ICNIRP, evaluation of non-thermal biological effects from RF radiation are dismissed as scientific evidence of adverse health effects in the Monograph. This has provoked many comments sent to the WHO. However, at a meeting on March 3, 2017 at the WHO Geneva office it was stated that the WHO has no intention to change the Core Group.

 

 

Evaluation of mobile phone and cordless phone use and glioma risk

In a recent article published in a scientific journal we evaluated use of wireless phones (mobile phones and cordless phones; DECT) and glioma risk. Glioma is a brain tumour that is one of the most common types. We used the Sir Austin Bradford Hill nine viewpoints on association or causation published in 1965 at the height of the debate on smoking and lung cancer risk. The same method can be used for other environmental agents and cancer risk.

As Bradford Hill pointed out not all nine viewpoints need to be fulfilled. The current knowledge may not exist in certain aspects. However, certain aspects such as first exposure before the onset of the disease and a dose-response relationship should exist.

Our evaluation was based on human epidemiological studies and findings in laboratory studies on animals and in cell cultures. Our conclusion was all nine viewpoints by Bradford Hill are fulfilled and that glioma is caused by radiofrequency (RF) radiation:

The nine Bradford Hill viewpoints on association or causation regarding RF radiation and glioma risk seem to be fulfilled in this review. Based on that we conclude that glioma is caused by RF radiation. Revision of current guidelines for exposure to RF radiation is needed.

RF radiation as a human carcinogen was evaluated by the International Agency for Research on Cancer (IARC) at WHO in May 2011. The conclusion was that such exposure is a possible human carcinogen, Group 2B according to the definition by WHO. The scientific evidence has increased since then and RF radiation should now be regarded as a human carcinogen, Group 1. An updated new evaluation by IARC is urgently needed.

We discuss in our article scientific controversy in this area including industry influence and ties between researchers and industry. A key player is the International Commission on Non-Ionizing Radiation (ICNIRP), a private NGO based in Germany that selects its own members and that does not publish funding sources. The ICNIRP guideline for RF radiation is extremely high and only based on short time thermal (heating) effects. Non-thermal effects are disregarded, that is a vast majority of studies on negative health effects from RF radiation not based on tissue heating. This gives in practice a ‘green card’ to roll out this technology since the high ICNIRP guideline is rarely compromised. Several governmental organizations in different countries have adopted the high ICNIRP level for exposure.

A new Health Criteria (Monograph) on RF radiation and health is under production by WHO. As discussed previously this document is biased towards the no-risk paradigm thereby neglecting published health risks from RF radiation. It has turned out that almost all persons in the core group for the WHO Monograph are present or former members of ICNIRP, see Table.

 

Table. Members of WHO Monograph core group and their involvement in other groups

Name WHO ICNIRP UK/AGNIR SSM SCENIHR
Simon Mann X X X
Maria Feychting X X X X*
Gunnhild Oftedal X X
Eric van Rongen X X X
Maria Rosaria Scarfi X X* X X
Denis Zmirou X

*former

WHO: World Health Organization

ICNIRP: International Commission on Non-Ionizing Radiation Protection

AGNIR: Advisory Group on Non-Ionising Radiation

SSM: Strålsäkerhetsmyndigheten (Swedish Radiation Safety Authority)

SCENIHR: Scientific Committee on Emerging and Newly Identified Health Risks

 

Thus, this fact – being member of both ICNIRP and the core group – is a serious conflict of interest. One would rarely expect that the core group members would present an evaluation that is in conflict with their own evaluation in ICNIRP. It has been requested that these persons should be replaced by experts with no conflict of interest, a most reasonable viewpoint.

As a matter of fact the Ethical Board at the Karolinska Institute in Stockholm, Sweden, concluded already in 2008 that being a member of ICNIRP may be a conflict of interest that should be stated in scientific publications (Karolinska Institute Diary Number 3753-2008-609). This is not done as far as can be seen in publications by ICNIRP persons such as members of the WHO core group.

The fifth generation (5G) of RF radiation is now under establishment. This is done without proper dosimetry or studies on potential health effects. The major media attention is a ‘love song’ to all possibilities with this technology such as so called self-driving cars, internet of things etc. Consequences for human health and environment such as wild life and vegetation are not discussed. Politicians, governmental agencies and media are responsible for the skewed debate. The layman is not informed about opposite opinions on this development. Health effects from RF radiation in media is a ‘no issue’ at least in Sweden but also in most other countries.

High radiofrequency radiation at Stockholm Old Town in Sweden

Exposure to radiofrequency (RF) radiation was classified as a possible human carcinogen, Group 2B, by the International Agency for Research on Cancer at WHO in 2011. Outdoor RF radiation levels were measured during five tours in Stockholm Old Town in April, 2016 using the EME Spy 200 exposimeter with 20 predefined frequencies. The results were based on 10,437 samples in total. The mean level of the total RF radiation was 4,293 μW/m2 (0.4293 μW/cm2). The highest mean levels were obtained for global system for mobile communications (GSM) + universal mobile telecommunications system (UMTS) 900 downlink and long‑term evolution (LTE) 2600 downlink (1,558 and 1,265 μW/m2, respectively). The town squares displayed highest total mean levels, with the example of Järntorget square with 24,277 μW/m2 (min 257, max 173,302 μW/m2). Measurements in the streets surrounding the Royal Castle were lower than the total for the Old Town, with a mean of 756 μW/m2 (min 0.3, max 50,967 μW/m2). The BioInitiative 2012 Report defined the scientific benchmark for possible health risks as 30‑60 μW/m2. Our results of outdoor RF radiation exposure at Stockholm Old Town are significantly above that level. The full report can be found here.

High radiofrequency radiation at the Stockholm Central Station in Sweden

We measured the radiofrequency (RF) radiation at the Stockholm Central Station in Sweden in November 2015. The full study can be read here. The exposimeter EME Spy 200 was used and it covers 20 different RF bands from 88 to 5,850 MHz. In total 1,669 data points were recorded. The median value for total exposure was 921 µW/m2 (or 0.092 μW/cm2; 1 μW/m2=0.0001 μW/cm2) with some outliers over 95,544 µW/m2 (6 V/m, upper detection limit). The mean total RF radiation level varied between 2,817 to 4,891 µW/m2 for each walking round.

Hot spots were identified, for example close to a wall mounted base station yielding over 95,544 µW/m2 and thus exceeding the exposimeter’s detection limit, see Figure below. A man is standing with his smartphone just a couple of meters below a base station (see arrow). In that area maximum measured power density in the GSM +UMTS 900 downlink band from the base station was 95,544 µW/m2, which is the upper limit of measurement for EME Spy 200.

imgp5647a

Almost all of the total measured levels were above the precautionary target level of 3 to 6 µW/m2 as proposed by the BioInitiative Working Group in 2012. That target level was one-tenth of the scientific benchmark providing a safety margin either for children, or chronic exposure conditions. Considering the rapid progress of this technology, including 5G that is to be launched in the near future, it is important to monitor current RF radiation exposure in the environment.

WHO Monograph on Radiofrequency Radiation and ICNIRP

There is growing international concern on the biased representation of persons in the preparation of the WHO Monograph on Radiofrequency Radiation. As discussed earlier the group is dominated by members of ICNIRP. In fact the Ethical Board at the Karolinska Institute in Stockholm, Sweden concluded already in 2008 that being a member of ICNIRP may be a conflict of interest that should be stated in scientific publications (Karolinska Institute Diary Number 3753-2008-609).

A recent letter to WHO written by members of the BioInitiative Working Group describes the unbalanced ‘no-risk’ group at WHO preparing the document. The full text may be read here.

Increasing incidence of thyroid cancer in the Nordic countries

The incidence of thyroid cancer is increasing in many countries, especially the papillary type that is the most radiosensitive type. We used the Swedish Cancer Register and NORDCAN to study the incidence of thyroid cancer during 1970-2013 using joinpoint regression analysis. The incidence increased during the whole study period in both men and women. Based on NORDCAN data, there was a statistically significant increase in the incidence of thyroid cancer in the Nordic countries during the same time period. In both women and men one joinpoint was detected in 2006. The incidence increased substantially during 2006-2013 in women; annual percentage change (APC) +6.16 % (95 % CI +3.94, +8.42 %) and in men; APC +6.84 % (95 % CI +3.69, +10.08 %). These results were similar as in the Swedish Cancer Register. Analyses based on data from the Cancer Register showed that the increasing trend in Sweden was mainly caused by thyroid cancer of the papillary type. We postulate that the whole increase cannot be attributed to better diagnostic procedures. Increasing exposure to ionizing radiation, e.g. medical CT scans, and to radiofrequency radiation (non-ionizing radiation) should be further studied as causative factors to this emerging thyroid cancer health problem.

One aspect to be studied is the increasing use of mobile phones. The antenna was previously placed at the top of the phone but is usually now placed at the bottom in smartphones. This gives higher exposure of radiofrequency radiation to the thyroid gland, see figure. A smartphone can in addition have multiple antennas.

thyroid-cancer-incidence-figure-10