Radiofrequency radiation from nearby base stations gives high levels in an apartment in Stockholm, Sweden: A case report

We measured radiofrequency radiation in an apartment in Stockholm. The study is open under open access. Due to nearby bases stations high radiation levels were measure both in the apartment and on balconies.

A total of 74,531 measurements were made corresponding to ~83 h of recording. The total mean RF radiation level was 3,811 μW/m2 (range 15.2‑112,318 μW/m2) for the measurement of the whole apartment, including balconies. Particularly high levels were measured on three balconies and 3 of 4 bedrooms. The total mean RF radiation level decreased by 98% when the measured down‑links from the base stations for 2, 3 and 4 G were disre­garded. The results are discussed in relation to the detrimental health effects of non‑thermal RF radiation. Due to the current high RF radiation, the apartment is not suitable for long‑term living, particularly for children who may be more sensitive than adults. For a definitive conclusion regarding the effect of RF radiation from nearby base stations, one option would be to turn them off and repeat the measurements. However, the simplest and safest solution would be to turn them off and dismantle them.

Thus, we concluded that of special concern is the levels in bedrooms, especially those two used by children, since they seem to be more vulnerable to adverse health effects than grown‑ups. They have also a longer expected life in which illnesses may later become manifest. The results indicate that this apartment is unsuitable for long‑term living based on current knowledge of the potential adverse effects on health of RF radiation.

Another conclusion is that RF radiation should be measured in homes, especially before moving into a new one.

Advertisements

High radiofrequency radiation at Stockholm Old Town in Sweden

Exposure to radiofrequency (RF) radiation was classified as a possible human carcinogen, Group 2B, by the International Agency for Research on Cancer at WHO in 2011. Outdoor RF radiation levels were measured during five tours in Stockholm Old Town in April, 2016 using the EME Spy 200 exposimeter with 20 predefined frequencies. The results were based on 10,437 samples in total. The mean level of the total RF radiation was 4,293 μW/m2 (0.4293 μW/cm2). The highest mean levels were obtained for global system for mobile communications (GSM) + universal mobile telecommunications system (UMTS) 900 downlink and long‑term evolution (LTE) 2600 downlink (1,558 and 1,265 μW/m2, respectively). The town squares displayed highest total mean levels, with the example of Järntorget square with 24,277 μW/m2 (min 257, max 173,302 μW/m2). Measurements in the streets surrounding the Royal Castle were lower than the total for the Old Town, with a mean of 756 μW/m2 (min 0.3, max 50,967 μW/m2). The BioInitiative 2012 Report defined the scientific benchmark for possible health risks as 30‑60 μW/m2. Our results of outdoor RF radiation exposure at Stockholm Old Town are significantly above that level. The full report can be found here.

High radiofrequency radiation at the Stockholm Central Station in Sweden

We measured the radiofrequency (RF) radiation at the Stockholm Central Station in Sweden in November 2015. The full study can be read here. The exposimeter EME Spy 200 was used and it covers 20 different RF bands from 88 to 5,850 MHz. In total 1,669 data points were recorded. The median value for total exposure was 921 µW/m2 (or 0.092 μW/cm2; 1 μW/m2=0.0001 μW/cm2) with some outliers over 95,544 µW/m2 (6 V/m, upper detection limit). The mean total RF radiation level varied between 2,817 to 4,891 µW/m2 for each walking round.

Hot spots were identified, for example close to a wall mounted base station yielding over 95,544 µW/m2 and thus exceeding the exposimeter’s detection limit, see Figure below. A man is standing with his smartphone just a couple of meters below a base station (see arrow). In that area maximum measured power density in the GSM +UMTS 900 downlink band from the base station was 95,544 µW/m2, which is the upper limit of measurement for EME Spy 200.

imgp5647a

Almost all of the total measured levels were above the precautionary target level of 3 to 6 µW/m2 as proposed by the BioInitiative Working Group in 2012. That target level was one-tenth of the scientific benchmark providing a safety margin either for children, or chronic exposure conditions. Considering the rapid progress of this technology, including 5G that is to be launched in the near future, it is important to monitor current RF radiation exposure in the environment.