Incorrect information about wireless phones and the risk for brain tumours in a Swedish newspaper

The well known Swedish daily newspaper, Svenska Dagbladet, has published an article that does not give correct information on the risk for brain tumours from use of wireless phones. The newspaper has refused to publish our rebuttal. It is now published in the medical journal, Medicinsk Access (only in Swedish).

Court rules on information on health risks from wireless phones

A court in Rome has judged that people must be informed on health risks from use of wireless phones, both mobile and cordless phones. The decision has not been appealed and the information campaign must start by July 16, 2019.

No doubt this is a victory for public health. Similar decision should be made in all countries. We have the knowledge of health risks but the population is not informed due to negligence by government and media like in Sweden. We have the scientific evidence on risks to human beings and also the environment by no action in undertaken. Instead, the 5th generation, 5G, of wireless communication is implemented without proper scientific studies on the risks (www.5gappeal.eu; www.emfcall.org).

More on the Italian verdict can be found here.

Environmental radiofrequency radiation at the Järntorget Square in Stockholm Old Town in Sweden compared with results on tumour risks in rats exposed to 1.8 GHz base station environmental emissions

We measured radiofrequency (RF) radiation at the Järntorget square in the Stockholm Old Town in a new study recently published.  In a previous study of the Old Town we found especially high RF radiation at that square. The maximum level in the present study was 11.6 V/m at the center of the square, where the antenna was focused. Järntorget’s mean value was 5.2 V/m, median 5.0 V/m, range 1.2-11.6 V/m.

Of interest is that this level can be compared to life-span carcinogenicity study on rats exposed to 1.8 GHz GSM environmental radiation performed at the Ramazzini Institute (RI) in Italy. A statistically significant increase in the incidence of malignant Schwannoma in the heart was found in male rats at the highest dose, 50 V/m. In treated female rats at the highest dose the incidence of malignant glial tumors was increased, although not statistically significant. In conclusion our study showed RF radiation levels at one square, Järntorget, in Sweden was only one order of magnitude lower than those showing increased incidence of tumours in the RI animal study. An increased cancer risk cannot be excluded for those working next to or at Järntorget for longer time periods.

These results indicate that it is pertinent to measure RF radiation levels in the environment and in homes. Such exposure levels should be declared for those intending to settle down in any dwelling.

The Public Health Agency of Sweden misleads about cancer risks from radiofrequency radiation

The mission of this Agency is according to their home page:

The Public Health Agency of Sweden has a national responsibility for public health issues and works to ensure good public health. The agency also works to ensure that the population is protected against communicable diseases and other health threats.

However, when it comes to radiofrequency radiation and health their report from 2017 gives a wrong evaluation of the state of knowledge. Cancer risks are denied. It was written by a former and a present member of ICNIRP so no doubt the message is not different from that provided by ICNIRP. Our critique is published only in Swedish but can be read here.

Fatal collision? Are wireless headsets a risk in treating patients?

In this recently published article wireless headsets are discussed. There is no open access to the article, but abstract is as follows:

Wireless-enabled headsets that connect to the internet can provide remote transcribing of patient examination notes. Audio and video can be captured and transmitted by wireless signals sent from the computer screen in the frame of the glasses. But using wireless glass-type devices can expose the user to a specific absorption rates (SAR) of 1.11–1.46 W/kg of radiofrequency radiation. That RF intensity is as high as or higher than RF emissions of some cell phones.  Prolonged use of cell phones used ipsilaterally at the head has been associated with statistically significant increased risk of glioma and acoustic neuroma. Using wireless glasses for extended periods to teach, to perform surgery, or conduct patient exams will expose the medical professional to similar RF exposures which may impair brain performance, cognition and judgment, concentration and attention and increase the risk for brain tumors. The quality of medical care may be compromised by extended use of wireless-embedded devices in health care settings. Both medical professionals and their patients should know the risks of such devices and have a choice about allowing their use during patient exams. Transmission of sensitive patient data over wireless networks may increase the risk of hacking and security breaches leading to losses of private patient medical and financial data that are strictly protected under HIPPA health information privacy laws.

A detailed discussion is made of such items as: What are wireless headsets and why are healthcare professionals being encouraged to use them? What is the problem for the medical professional? What is the problem for the patient? What’s the advice to medical professionals?

Increasing incidence of aggressive brain tumour (glioblastoma multiforme) in England during 1995-2015

A recent article describes increasing incidence of the most malignant type of brain tumor, glioblastoma multiforme (GBM) in England during 1995-2015. The number of patients increased from 2.4 to 5.0 per 100,000 during that time period. In total the yearly increase was from 983 to 2,531 patients, thus a substantial number. The incidence of low-grade glioma decreased but was stabilized from 2004, see figure 2. Thus the increasing incidence cannot be explained by low-grade glioma transforming to high-grade (GBM). The authors conclude that a general environmental factor must be the cause.

The increasing incidence is most pronounced for GBM in temporal or frontal parts of the brain, see figure 6. That is parts with highest exposure to radiofrequency radiation from the handheld wireless phone.

The increasing incidence of GBM was seen in all age groups but was most pronounced in those aged more than 55 years.

We published incidence data on brain tumours for the time period 1998-2015 based on the Swedish Cancer Register. In the age group 60-79 years the yearly incidence of high-grade glioma increased statistically significant in men with +1.68% (+0.39, +2.99 %) (n = 2,275) and in women with +1.38% (+0.32, +2.45%) (n = 1,585), see figures. Few patients were diagnosed in the age group 80+ yielding analysis less meaningful. High-grade glioma includes astrocytoma grades III and IV. Astrocytoma grade IV is the same as glioblastoma multiforme (GBM) with bad prognosis, survival about one year or less.

Our results are similar to those now published from England. All results are in agreement with wireless phones (mobile phones and cordless phones) causing glioma.

 

 

 

 

 

 

 

Increasing brain tumor rates in Sweden

Recently we published a new article on brain tumor rates in Sweden using the Inpatient Register for the time period 1998-2015. Also incidence data using the Swedish Cancer Register were analyzed for the same time period. The full article can be found here, see also abstract below.

We used the Swedish Inpatient Register (IPR) to analyze rates of brain tumors of unknown type (D43) during 1998-2015. Average Annual Percentage Change (AAPC) per 100,000 increased with +2.06%, 95% confidence interval (CI) +1.27, +2.86% in both genders combined. A joinpoint was found in 2007 with Annual Percentage Change (APC) 1998-2007 of +0.16%, 95% CI -0.94, +1.28%, and 2007-2015 of +4.24%, 95% CI +2.87, +5.63%. Highest AAPC was found in the age group 20-39 years. In the Swedish Cancer Register the age-standardized incidence rate per 100,000 increased for brain tumors, ICD-code 193.0, during 1998-2015 with AAPC in men +0.49%, 95% CI +0.05, +0.94%, and in women +0.33%, 95% CI -0.29, +0.45%. The cases with brain tumor of unknown type lack morphological examination. Brain tumor diagnosis was based on cytology/histopathology in 83% for men and in 87% for women in 1980 in the Cancer Register. This frequency increased to 90% in men and 88% in women in 2015. During the same time period CT and MRI imaging techniques were introduced and morphology is not always necessary for diagnosis. If all brain tumors based on clinical diagnosis with CT or MRI had been reported to the Cancer Register the frequency of diagnoses based on cytology/histology would have decreased in the register. The results indicate underreporting of brain tumor cases to the Cancer Register. The real incidence would be higher. Thus, incidence trends based on the Cancer Register should be used with caution. Use of wireless phones should be considered in relation to the change of incidence rates.