Increasing brain tumor rates in Sweden

Recently we published a new article on brain tumor rates in Sweden using the Inpatient Register for the time period 1998-2015. Also incidence data using the Swedish Cancer Register were analyzed for the same time period. The full article can be found here, see also abstract below.

We used the Swedish Inpatient Register (IPR) to analyze rates of brain tumors of unknown type (D43) during 1998-2015. Average Annual Percentage Change (AAPC) per 100,000 increased with +2.06%, 95% confidence interval (CI) +1.27, +2.86% in both genders combined. A joinpoint was found in 2007 with Annual Percentage Change (APC) 1998-2007 of +0.16%, 95% CI -0.94, +1.28%, and 2007-2015 of +4.24%, 95% CI +2.87, +5.63%. Highest AAPC was found in the age group 20-39 years. In the Swedish Cancer Register the age-standardized incidence rate per 100,000 increased for brain tumors, ICD-code 193.0, during 1998-2015 with AAPC in men +0.49%, 95% CI +0.05, +0.94%, and in women +0.33%, 95% CI -0.29, +0.45%. The cases with brain tumor of unknown type lack morphological examination. Brain tumor diagnosis was based on cytology/histopathology in 83% for men and in 87% for women in 1980 in the Cancer Register. This frequency increased to 90% in men and 88% in women in 2015. During the same time period CT and MRI imaging techniques were introduced and morphology is not always necessary for diagnosis. If all brain tumors based on clinical diagnosis with CT or MRI had been reported to the Cancer Register the frequency of diagnoses based on cytology/histology would have decreased in the register. The results indicate underreporting of brain tumor cases to the Cancer Register. The real incidence would be higher. Thus, incidence trends based on the Cancer Register should be used with caution. Use of wireless phones should be considered in relation to the change of incidence rates.

Advertisements

Maternal cell phone use during pregnancy and child behavioral problems in five birth cohorts

Previous studies have reported associations between prenatal cell phone use (exposure to radiofrequent fields) and child behavioral problems. In this study  data from 83,884 mother-child pairs in the five cohorts from Denmark (1996-2002), Korea (2006-2011), the Netherlands (2003-2004), Norway (2004-2008), and Spain (2003-2008) were analyzed. Cell phone use was grouped into none, low, medium, and high, based on frequency of calls during pregnancy reported by the mothers. Evidence for a trend of increasing risk of child behavioral problems through the maternal cell phone use categories was observed for hyperactivity/inattention problems; ADHD (OR for problems in the clinical range: 1.11, 95%CI 1.01, 1.22; 1.28, 95%CI 1.12, 1.48, among children of medium and high users, respectively). Thus, maternal cell phone use during pregnancy may be associated with an increased risk for behavioral problems, particularly hyperactivity/inattention problems, in the offspring. Increased risk was also found in the high cell phone use category for overall behavioral problems and emotional problems, although not statistically significant. The study can be found here.

In all analyses low cell phone use was used as the reference category. For no cell phone use decreased risk was found for all studied behavioral problems (overall problems, ADHD and emotional problems). It is unclear why low cell phone use instead of no cell phone use was used as the reference category. Using subjects that never used a cell phone would have given higher risk estimates in the high use category.

In the Dutch cohort cordless phone use was assessed yielding similar results as for cell phone use.

World Health Organization, radiofrequency radiation and health – a hard nut to crack (Review)

In a new article by Dr Lennart Hardell health effects from radiofrequency radiation, ICNIRP and the WHO agenda are discussed. The whole article can be found here, see also abstract below.

Abstract. In May 2011 the International Agency for Research on Cancer (IARC) evaluated cancer risks from radiofrequency (RF) radiation. Human epidemiological studies gave
evidence of increased risk for glioma and acoustic neuroma. RF radiation was classified as Group 2B, a possible human carcinogen. Further epidemiological, animal and mechanistic
studies have strengthened the association. In spite of this, in most countries little or nothing has been done to reduce exposure and educate people on health hazards from RF
radiation. On the contrary ambient levels have increased. In 2014 the WHO launched a draft of a Monograph on RF fields and health for public comments. It turned out that five
of the six members of the Core Group in charge of the draft are affiliated with International Commission on Non-Ionizing Radiation Protection (ICNIRP), an industry loyal NGO, and
thus have a serious conflict of interest. Just as by ICNIRP, evaluation of non-thermal biological effects from RF radiation are dismissed as scientific evidence of adverse health effects in the Monograph. This has provoked many comments sent to the WHO. However, at a meeting on March 3, 2017 at the WHO Geneva office it was stated that the WHO has no intention to change the Core Group.

 

 

Increased risk for glioma associated with mobile phone use in Interphone Canada

Probabilistic multiple-bias modelling applied to the Canadian data from the INTERPHONE study of mobile phone use and risk of glioma, meningioma, acoustic neuroma, and parotid gland tumors.

Momoli F, Siemiatycki J, McBride ML, Parent MÉ, Richardson L, Bedard D, Platt R, Vrijheid M, Cardis E, Krewski D.

Abstract

We undertook a re-analysis of the Canadian data from the thirteen-country INTERPHONE case-control study (2001-2004), which evaluated the association between mobile phone use and risk of brain, acoustic neuroma, and parotid gland tumors. The main publication of the multinational INTERPHONE study concluded that “biases and errors prevent a causal interpretation”. We applied a probabilistic multiple-bias model to address possible biases simultaneously, using validation data from billing records and non-participant questionnaires as information on recall error and selective participation. Our modelling sought to adjust for these sources of uncertainty and to facilitate interpretation. For glioma, the odds ratio comparing highest quartile of use (over 558 lifetime hours) to non-regular users was 2.0 (95% confidence interval: 1.2, 3.4). The odds ratio was 2.2 (95% confidence interval: 1.3, 4.1) when adjusted for selection and recall biases. There was little evidence of an increase in the risk of meningioma, acoustic neuroma, or parotid gland tumors in relation to mobile phone use. Adjustments for selection and recall biases did not materially affect interpretation in our Canadian results.

The article can be found here.

Comment:

It is noteworthy that statistically significant increased risk was found already at 558+ hours of cumulative use corresponding to 9 min per day during 10 years. This amount is much lower than now used for wireless phones. Total Interphone showed for cumulative call time, 1640 hours or more, odds ratio 1.40 (95% confidence interval 1.03–1.89) for glioma. This corresponds to less than half an hour per day (27 min) during 10 years.

Interphone Canada confirms the increased risk for glioma associated with use of wireless phones, see our recent review, Carlberg, Hardell 2017.

Effects of Mobile Phones on Children’s and Adolescents’ Health: A Commentary

Effects of Mobile Phones on Children’s and Adolescents’ Health: A Commentary

Author: Lennart Hardell

In: Special Section of Child Development. Contemporary Mobile Technology and Child and Adolescent Development, edited by Zheng Yan and Lennart Hardell, May 15, 2017.

Abstract

The use of digital technology has grown rapidly during the last couple of decades. During use, mobile phones and cordless phones emit radiofrequency (RF) radiation. No previous generation has been exposed during childhood and adolescence to this kind of radiation. The brain is the main target organ for RF emissions from the handheld wireless phone. An evaluation of the scientific evidence on the brain tumor risk was made in May 2011 by the International Agency for Research on Cancer at World Health Organization. The scientific panel reached the conclusion that RF radiation from devices that emit nonionizing RF radiation in the frequency range 30 kHz–300 GHz is a Group 2B, that is, a “possible” human carcinogen. With respect to health implications of digital (wireless) technologies, it is of importance that neurological diseases, physiological addiction, cognition, sleep, and behavioral problems are considered in addition to cancer. Well-being needs to be carefully evaluated as an effect of changed behavior in children and adolescents through their interactions with modern digital technologies.

Discussion

In spite of the IARC evaluation little has happened to reduce exposure to RF fields in most countries. The exposure guideline used by many agencies was established in 1998 by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) and was based on thermal (heating) effects from RF radiation neglecting non-thermal biological effects. It was updated in 2009 and still gives the guideline 2 to 10 W/m2 for RF radiation depending on frequency.

In contrast to ICNIRP the BioInitiative Report from 2007, updated in 2012, based the evaluation also on non-thermal health effects from RF radiation. The scientific benchmark for possible health risks was defined to be 30 to 60 µW/m2.  Thus, using the significantly higher guideline by ICNIRP gives a ‘green card’ to roll out the digital technology thereby not considering non-thermal health effects from RF radiation. Numerous health hazards are disregarded such as cancer, neurological diseases, psychological addiction, cognition, sleep and behavioral problems.

For obvious reasons the extent and severity of long-term health effects among children and adolescents using this technology are not know. However, there are already numerous peer-reviewed studies showing health hazards from wireless devices. Urgent action using the precautionary principle is needed.

Evaluation of mobile phone and cordless phone use and glioma risk

In a recent article published in a scientific journal we evaluated use of wireless phones (mobile phones and cordless phones; DECT) and glioma risk. Glioma is a brain tumour that is one of the most common types. We used the Sir Austin Bradford Hill nine viewpoints on association or causation published in 1965 at the height of the debate on smoking and lung cancer risk. The same method can be used for other environmental agents and cancer risk.

As Bradford Hill pointed out not all nine viewpoints need to be fulfilled. The current knowledge may not exist in certain aspects. However, certain aspects such as first exposure before the onset of the disease and a dose-response relationship should exist.

Our evaluation was based on human epidemiological studies and findings in laboratory studies on animals and in cell cultures. Our conclusion was all nine viewpoints by Bradford Hill are fulfilled and that glioma is caused by radiofrequency (RF) radiation:

The nine Bradford Hill viewpoints on association or causation regarding RF radiation and glioma risk seem to be fulfilled in this review. Based on that we conclude that glioma is caused by RF radiation. Revision of current guidelines for exposure to RF radiation is needed.

RF radiation as a human carcinogen was evaluated by the International Agency for Research on Cancer (IARC) at WHO in May 2011. The conclusion was that such exposure is a possible human carcinogen, Group 2B according to the definition by WHO. The scientific evidence has increased since then and RF radiation should now be regarded as a human carcinogen, Group 1. An updated new evaluation by IARC is urgently needed.

We discuss in our article scientific controversy in this area including industry influence and ties between researchers and industry. A key player is the International Commission on Non-Ionizing Radiation (ICNIRP), a private NGO based in Germany that selects its own members and that does not publish funding sources. The ICNIRP guideline for RF radiation is extremely high and only based on short time thermal (heating) effects. Non-thermal effects are disregarded, that is a vast majority of studies on negative health effects from RF radiation not based on tissue heating. This gives in practice a ‘green card’ to roll out this technology since the high ICNIRP guideline is rarely compromised. Several governmental organizations in different countries have adopted the high ICNIRP level for exposure.

A new Health Criteria (Monograph) on RF radiation and health is under production by WHO. As discussed previously this document is biased towards the no-risk paradigm thereby neglecting published health risks from RF radiation. It has turned out that almost all persons in the core group for the WHO Monograph are present or former members of ICNIRP, see Table.

 

Table. Members of WHO Monograph core group and their involvement in other groups

Name WHO ICNIRP UK/AGNIR SSM SCENIHR
Simon Mann X X X
Maria Feychting X X X X*
Gunnhild Oftedal X X
Eric van Rongen X X X
Maria Rosaria Scarfi X X* X X
Denis Zmirou X

*former

WHO: World Health Organization

ICNIRP: International Commission on Non-Ionizing Radiation Protection

AGNIR: Advisory Group on Non-Ionising Radiation

SSM: Strålsäkerhetsmyndigheten (Swedish Radiation Safety Authority)

SCENIHR: Scientific Committee on Emerging and Newly Identified Health Risks

 

Thus, this fact – being member of both ICNIRP and the core group – is a serious conflict of interest. One would rarely expect that the core group members would present an evaluation that is in conflict with their own evaluation in ICNIRP. It has been requested that these persons should be replaced by experts with no conflict of interest, a most reasonable viewpoint.

As a matter of fact the Ethical Board at the Karolinska Institute in Stockholm, Sweden, concluded already in 2008 that being a member of ICNIRP may be a conflict of interest that should be stated in scientific publications (Karolinska Institute Diary Number 3753-2008-609). This is not done as far as can be seen in publications by ICNIRP persons such as members of the WHO core group.

The fifth generation (5G) of RF radiation is now under establishment. This is done without proper dosimetry or studies on potential health effects. The major media attention is a ‘love song’ to all possibilities with this technology such as so called self-driving cars, internet of things etc. Consequences for human health and environment such as wild life and vegetation are not discussed. Politicians, governmental agencies and media are responsible for the skewed debate. The layman is not informed about opposite opinions on this development. Health effects from RF radiation in media is a ‘no issue’ at least in Sweden but also in most other countries.

High radiofrequency radiation at the Stockholm Central Station in Sweden

We measured the radiofrequency (RF) radiation at the Stockholm Central Station in Sweden in November 2015. The full study can be read here. The exposimeter EME Spy 200 was used and it covers 20 different RF bands from 88 to 5,850 MHz. In total 1,669 data points were recorded. The median value for total exposure was 921 µW/m2 (or 0.092 μW/cm2; 1 μW/m2=0.0001 μW/cm2) with some outliers over 95,544 µW/m2 (6 V/m, upper detection limit). The mean total RF radiation level varied between 2,817 to 4,891 µW/m2 for each walking round.

Hot spots were identified, for example close to a wall mounted base station yielding over 95,544 µW/m2 and thus exceeding the exposimeter’s detection limit, see Figure below. A man is standing with his smartphone just a couple of meters below a base station (see arrow). In that area maximum measured power density in the GSM +UMTS 900 downlink band from the base station was 95,544 µW/m2, which is the upper limit of measurement for EME Spy 200.

imgp5647a

Almost all of the total measured levels were above the precautionary target level of 3 to 6 µW/m2 as proposed by the BioInitiative Working Group in 2012. That target level was one-tenth of the scientific benchmark providing a safety margin either for children, or chronic exposure conditions. Considering the rapid progress of this technology, including 5G that is to be launched in the near future, it is important to monitor current RF radiation exposure in the environment.